N. Bonessio, L. Valdevit, G. Lomiento
8th World Congress on Joints, Bearings and Seismic Systems for Concrete Structures, Atlanta, GA, September 25-29, 2016
Publication year: 2016

Abstract

The development of a novel class of materials that can be used for the seismic isolation protection systems is presented. The material is an architected cellular material obtained as periodic reproduction of a unit cell in all spatial directions. The mechanical properties of the constitutive unit-cell are tailored through an optimal design of the spatial configuration of voids and solids (cellular architecture) for a given solid constituent. The presented material can be designed at different scales in order to obtain unprecedented combinations of mechanical properties, such as high stiffness and strength in the vertical direction combined with high flexibility and dissipative capability in the lateral directions. Compact-shape, light-weight isolators overcoming traditional isolators’ limitations may be obtained through optimization of the unit cell properties. A mechanistic model of the isolator is provided after calibration on randomized parametric nonlinear Finite Element analysis of the unit cell. Keywords: Seismic isolation; periodic architected material; mechanistic model.