N. Vermaak, L. Valdevit, F. W. Zok and A. G. Evans
ASME IMECE 2007-41347, Seattle, USA, Nov. 11-15, 2007
Publication year: 2007


The operating conditions of scramjet engines demand designs that include active cooling by the fuel and the use of lightweight materials that withstand extreme heat fluxes and structural loads. An optimization tool has previously been introduced to direct the development of advanced materials that outperform existing high temperature alloys and compete with ceramic matrix composites. This analysis presents verification and accretion of the analytical design tool through a combination of numerical and experimental techniques. Selected computational fluid dynamics (CFD) analyses have been performed to verify critical thermal assumptions. A high-power CO2 laser provides heat fluxes representative of hypersonic flight conditions.