L. Salari-Sharif, L. Valdevit
Experimental Mechanics, 54 (2014) 1491-1495
Publication year: 2014


Recent progress in advanced manufacturing enables fabrication of macro-scale hollow metallic lattices with unit cells in the millimeter range and sub-unit cell features at the submicron scale. If designed to minimize mass, these metallic microlattices can be manufactured with densities lower than 1 mg/cm3, making them the lightest metallic materials ever demonstrated. Measuring the compressive stiffness of these ultralight lattices with conventional contact techniques presents a major challenge, as the lattices buckle or locally fracture immediately after contact with the loading platens is established, with associated reduction in stiffness. Non-contact resonant approaches have been successfully used in the past for modulus measurements in solid materials, at both small and large scales. In this work we demonstrate that Laser Doppler Vibrometry coupled with Finite Elements Analysis is a suitable technique for the reliable extraction of the Young’s modulus in ultralight microlattices.

Leave a Reply

Your email address will not be published.