N. Bonessio, G. Lomiento, L. Valdevit
16th World Conference on Earthquake Engineering, Santiago Chile, January 9-13, 2017
Publication year: 2017

Abstract

In most recent earthquakes, traditional seismic design demonstrated its effectiveness in reducing casualties through ductile structural mechanisms, but allowed for extensive structural damages that accounted for tremendous economic losses. This evidence raised awareness for the need of an increased level of resiliency, mostly in low-rise buildings. Seismic isolation is a protection system that proved to be successful in prevent damages and maintaining operability. However, high costs and sever testing protocols currently discourage the extensive application of this technology to low-rise buildings. In this study, an architected periodic cellular material with unprecedented characteristic is proposed as a low-cost alternative to traditional technologies to produce seismic isolation devices for implementation in residential, retail and office buildings. Results from preliminary numerical analysis demonstrate the range of performance of this novel architected material in comparison with traditional materials. The scalability of the architected material is also addressed with the aim of investigating the feasibility of using tests on small assemblies of the constituent unit-cells instead of full scale tests to assess the structural performance of the isolators.