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Minimal Surface-Based Materials for Topological Elastic 
Wave Guiding
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Materials based on minimal surface geometries have shown superior 
strength and stiffness at low densities, which makes them promising 
continuous-based material platforms for a variety of engineering applications. 
In this work, it is demonstrated how these mechanical properties can be 
complemented by dynamic functionalities resulting from robust topological 
guiding of elastic waves at interfaces that are incorporated into the consid-
ered material platforms. Starting from the definition of Schwarz P minimal 
surface, geometric parametrizations are introduced that break spatial sym-
metry by forming 1D dimerized and 2D hexagonal minimal surface-based 
materials. Breaking of spatial symmetries produces topologically non-trivial 
interfaces that support the localization of vibrational modes and the robust 
propagation of elastic waves along pre-defined paths. These dynamic prop-
erties are predicted through numerical simulations and are illustrated by 
performing vibration and wave propagation experiments on additively manu-
factured samples. The introduction of symmetry-breaking topological inter-
faces through parametrizations that modify the geometry of periodic minimal 
surfaces suggests a new strategy to supplement the load-bearing properties 
of this class of materials with novel dynamic functionalities.
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performance.[1,2] For example, cellular 
materials have been extensively investi-
gated due to their ability to tailor a broad 
range of material properties and to pursue 
multifunctionality.[3–6] In this context, 
minimal surfaces have emerged as prom-
ising platforms for continuous-based 
material designs.[2,7–11] Minimal surfaces 
are characterized by zero mean curvature 
and provide an efficient tessellation of 
space. These shell-based materials, also 
referred to in the literature as “shellular 
materials”,[4,5,12] exhibit high stiffness and 
strength at ultralow densities,[4–6] and 
ensure lower sensitivity to stress concen-
trations with respect to truss-based cellular 
materials. The characteristics of minimal 
surfaces lead to materials with superior 
functionalities such as energy absorption, 
thermal management, and biomimetic 
designs, among others, which make them 
attractive solutions for applications in aer-
ospace, civil, mechanical, and biomedical 
engineering.[5,6,9–11,13,14] While most prior 

investigations focus on static and strength properties, a few 
studies have been devoted to dynamic properties that leverage 
the periodic geometry of most minimal surfaces. These include 
for example the existence of frequency band gaps.[10,13,15] How-
ever, several dynamic functionalities remain unexplored, and 
significant opportunities exist to combine multiple advanta-
geous static and dynamic mechanical properties within a single 
material platform. In this context, the recent explosion of 
activity in the field of topological metamaterials has uncovered 
numerous concepts for robust energy localization and defect-
immune waveguiding. For example, the existence of robust 
interface modes in 1D periodic lattices has been demonstrated 
in references,[16,17] while elastic analogs of the Quantum Hall 
Effect,[18] Quantum Spin Hall effect,[19] and Quantum Valley 
Hall effect[20–23] have been established to induce backscat-
tering immune waveguiding in 2D periodic elastic metamate-
rials. Additional studies have illustrated the existence of edge 
states and localized modes in quasiperiodic lattices,[24] and have 
explored the occurrence of higher-order topological modes and 
3D topological phases in elastic systems.[25] These explorations 
mostly rely on demonstrator models[26,27] that, while effective at 
illustrating novel waveguiding properties, are not suitable for 
implementation within a continuous material platform. To this 
end, minimal surface geometries offer unexplored opportuni-
ties for the implementation of material concepts that integrate 

The ORCID identification number(s) for the author(s) of this article 
can be found under https://doi.org/10.1002/adfm.202204122.

1. Introduction

An ever-increasing quest exists for materials featuring 
low mass-volume ratios and high strength for applica-
tions that require superior structural, thermal, and acoustic 
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efficient load-bearing capabilities and the ability to localize, 
guide, and steer elastic waves, which is relevant to applications 
related to noise isolation and absorption, vibration localization 
for energy harvesting and stress mitigation, among others.

Towards this goal, this paper investigates minimal surface-
based metamaterials that support robust topological interface 
modes and waveguiding capabilities through the introduction 
of geometrical defects that break spatial symmetries to create 
topological interfaces. The topological phenomena of interest 
rely on the manipulation of symmetries that exist in minimal 
surfaces such as the Schwarz P surface.[10,28] Here, we modify 
the isosurface definition of the triply periodic Schwarz P surface 
to produce 1D and 2D dimerized assemblies that break cyclic 
C2  and C6 symmetries and feature topologically non-trivial 
band structures that produce edge states. Thus, in this work, 
we illustrate how topological defects can be introduced through 
simple geometrical parameterizations of minimal surface 
designs, which makes them suitable platforms for the imple-
mentations of waveguiding concepts based on non-trivial dis-
persion topologies within continuous material platforms. The 
results presented suggest that a variety of geometrical param-
eterizations can be engineered to manipulate wave motion in 
minimal surface-based metamaterials and to effectively pursue 
dynamic functionalities such as energy localization and wave-
guiding, with a potential for extension to 3D assemblies.

2. Geometry of Dimerized Minimal Surface-Based 
Materials
Minimal surfaces combine structure and material in an effi-
cient manner by aligning force and geometry in an organic 
shape.[2,9,29] A minimal surface is defined by the points 
(x1, x2, x3) that satisfy the iso-surface requirement φ (r) = 0, 
where r = (x1i1 + x2i2 + x3i3) denotes the position vector in space. 
As a starting point, we consider the triply periodic Schwarz P 
surface,[7] formed by the assembly of primitive cells depicted in 
Figure 1a (left), which illustrates its cubic symmetry. We gen-
eralize this geometry by introducing a set of reciprocal vectors, 
bi (i = 1, 2, 3) that enforce spatial periodicity. Accordingly, the 
surface is generally expressed as
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where N = 3 and fn are spatial functions, which for the case of 
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π= 2 , 
where a is the lattice constant, while in (n = 1, 2, 3) are the unit 
vectors associated with the cartesian frame of reference. This 
produces the cubic symmetric surface shown in the left panel 
of Figure 1a.

Inspired by the 1D Su–Schrieffer–Heeger (SSH) model,[30,31] 
we modify this baseline geometry by considering a surface 
dimerized along the x1 direction, and limited to one unit cell in 
extent along the x2,  x3 directions. This leads to the 1D structure 
of Figure 1c. To this end, we define f1 as follows:
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where |γ| < 1 is a stretching parameter that dimerizes the sur-
face along x1, while f2, f3 are kept unchanged. The expression in 
Equation  (2) defines a stepwise modulation along x1, which is 
described by the modulus “mod” operator, with bb iia

π=1 1 being 
the new reciprocal lattice vector capturing the fact that the size 
of a unit cell is doubled along x1 with a period of 2a. Figure 1b 
shows the surfaces obtained for different γ. For γ  = 0, one  
obtains the Schwarz P surface comprising two equal units of 
length a, while ± γ produces two distinct unit cells that are 
mirror-symmetric versions of each other, and that break the 
C2  symmetry of the unit cell. We employ this parameterization 
to construct a 1D assembly along the x1 direction, wherein two 
surfaces characterized by two equal and opposite ± γ values are 
joined (Figure 1c) to produce a topologically non-trivial interface 
of the kind investigated in references.[16,32] The corresponding 
physical test specimen shown in Figure 1c, whose close-up view 
is depicted in Figure 1d, is fabricated through Stereolithography 
using a photopolymer resin (formlabs durable resin 1L) (see 
Experimental Section).

Figure 1. a) Unit cell of the Schwarz P surface, and dimerized version obtained for γ ≠ 0 (see Equation (2)). b) Planar views of mirror-symmetric 
dimerized unit cells for γ  =  0 (center) and ± γ (left and right). c) 1D dimerized assembly with non-trivial interface obtained by joining two surfaces 
corresponding to equal and opposite γ values, and d) close-up of fabricated sample employed in the experimental investigations.
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Next, we form a 2D hexagonal surface which is also dimer-
ized to break C6 symmetry in the x1,x2 plane, while retaining 
C3v symmetry. Following the approach in references,[21,22,26] sym-
metry breaking produces distinct degrees of freedom at oppo-
site valleys corresponding to high symmetry points in reciprocal 
space whereby wave functions feature opposite polarizations and 
thus emulate spin-orbit interactions.[33] The parameterization 
considers a hexagonal surface which is formed by the superpo-
sition of two triangular tessellations that are translated relative 
to each other by a quantity rr iia

S =
3

1 (Figure 2a). Their relative 
amplitude is modulated by a parameter γ, with the case of γ  =  0 
yielding to the 6-fold (C6) symmetric surface, while ± γ values 
produce the distinct dimerized surfaces shown in Figure  2b. 
These are constructed by expressing f1 and f2 in Equation (1) as

1

3
cos · cos · cos ·11 22 11 221

γ ( )( ) ( ) ( )( )=
−

+ + +bb rr bb rr bb bb rrf  (3)

bb rr bb rr bb bb rrf
γ ( ) ( ) ( )( )( )= + + + +′ ′ ′1

3
cos · cos · cos ·2 1 2 1 2  (4)

with r′ =  r − rs, while bb ii ii
a

π= +






2 1

2
3

2
1 1 2 , bb ii ii

a

π= −






2 1

2
3

2
22 1 2  

are the reciprocal lattice vectors in the x1, x2 plane. In the defi-
nition of the tessellation developing in the x1, x2 plane, f3 and b3 
are kept the same as introduced below Equation (1). The expres-
sion of f1 considers the superposition of three cosines aligned 
along directions separated by 60°, which defines a modulation 
with triangular symmetry. Hence, considering only f1 and f3 
produces the triangular surface of Figure 2a, while employing 

the superposition of f2 and f3 produces the same surface trans-
lated by rs. Finally, the superposition of the three functions 
f1, f2, f3 leads to a hexagonal surface when γ  =  0, and dimer-
ized hexagonal surfaces with γ ≠ 0 (Figure 2b). We employ this 
parameterization to construct a 2D dimerized surface in the 
x1,x2 plane, with x3 limited within [0, a]. Following the approach 
of the 1D case, we form an interface joining surfaces charac-
terized by two equal and opposite γ values along a predefined 
path. This leads to a topologically non-trivial interface of the 
kind investigated in references[21–23] and shown in Figure  2c. 
Figure 2d shows perspective views of the fabricated 2D sample, 
which is fabricated in Nylon 12 (HP 3D High Reusability PA 12)  
through Multi-Jet Fusion using an HP 4200 3D printing 
machine (see Experimental Section).

The surfaces illustrated above are inspired by the Schwarz 
P minimal surface, where desired symmetries and topological 
interfaces are incorporated into the surface definition. We note 
that the dimerized surfaces are no longer rigorously minimal 
surfaces given the fact that their mean curvature deviates 
from zero, which is the condition satisfied for example by the 
Schwarz P surface and by other similar geometries. The anal-
ysis of the mean curvature for the considered dimerized sur-
faces is in the Supporting Information for completion of the 
description of the proposed designs.

3. Results

We investigate wave propagation properties of the consid-
ered minimal surface-based materials through numerical 

Figure 2. a) Planar view of the two C6 symmetric surfaces that are translated relative to each other a quantity rr iia
S =

3
1. b) Their superposition based on 

weighted relative amplitude defined by γ leads to C3v symmetric surfaces. c) 2D hexagonal assembly with an interface obtained by joining surfaces 
characterized by equal and opposite ± γ values along the highlighted path. d) Perspective view of the sample used for experimental testing, which 
shows the limited extension of the 2D assembly in the out-of-plane direction.
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simulations and experiments. The models are formulated 
within the COMSOL environment, where dispersion spectra 
are computed to highlight the presence of band gaps and to 
evaluate their topological properties in the reciprocal space. 
Simulations on finite domains illustrate the existence of inter-
face modes, which is confirmed by experiments conducted on 
the additively manufactured samples.

3.1. 1D Dimerized Minimal Surface-Based Material

The 1D dimerized surfaces of Figure  1 have a lattice constant 
of 2a = 15 mm and a wall thickness of 0.5 mm. In the numer-
ical simulations, we consider the nominal properties of the 
resin, namely Young’s modulus E  =  1.77 GPa, Poisson’s ratio 
ν  =  0.35, and density ρ  =  1100  kg m−3 (see Experimental  
Section). Figure 3a,b shows the band structures of unit cells 
with γ  =  0 and γ  = ± 0.5,  respectively, where we identify a 
pair of flexural bands (blue dots), which are degenerate due to 
the symmetry of the structure cross-section, one longitudinal 
band (red dots), one torsional band (black dots), and hybridized 
bands (green dots). The color-coding of the branches is based 
on the computation of a polarization coefficient that tracks the 
polarization of the modes and that is computed according to 
the procedure described in the Supporting Information (see 
Equations S2–S4, Supporting Information). To demonstrate 

the distinct vibration modes of the 1D dimerized surface, three 
representative mode shapes of the flexural, longitudinal, and 
torsional branches are displayed in Figure 3c (video animations 
are provided in the Supporting Information).

In Figure 3a, we note that the double periodicity of the unit 
cell along the x1 direction for γ  =  0 causes folding of the bands, 
which forms degeneracies at the edges of the Brillouin zone. 
These degeneracies are lifted upon breaking the inversion 
symmetry of the unit cell for γ  ≠ 0, which opens band gaps. 
The case for the dimerized cell with γ  = ± 0.5  is illustrated in 
Figure 3b, where the three band gaps are highlighted by shaded 
colored areas, corresponding flexural (blue), longitudinal (red), 
and torsional (black) modes. In addition to the parameter γ, 
the formed bandgaps depend upon the material properties 
(Young’s modulus, density) and geometry of the structure (unit 
cell dimensions, wall thickness). The variation of these gaps 
as a function of selected material and geometrical parameters 
is presented in the Supporting Information for completeness. 
The evolution of the gaps as a function of the dimerization 
parameter γ is illustrated in Figure 3d, which shows the occur-
rence of a band inversion characterized by the gaps closing and 
re-opening as γ crosses zero and changes sign. This band inver-
sion is associated with a change in the topology of the bands, 
which is characterized by the computation of the Zak phase 
as the relevant topological invariant.[34] The calculation proce-
dure of the Zak phase, which has been reported in several prior 

Figure 3. a) Band structures of 1D dimerized surface with γ  = 0. The flexural, longitudinal, and torsional bands are respectively identified by blue, red, 
and black dots, while hybrid modes are denoted by green dots. This color-coding is defined by the value of the polarization coefficients computed for 
each branch. b) Band structures of 1D dimerized surface with γ  = ± 0.5. The gaps are highlighted by shaded areas whose color matches that of the 
bands it separates. c) Representative modes of the flexural, longitudinal, and torsional branches in 1D dimerized surface with γ  = 0, respectively. The 
modes are computed for k = 0.5 at the points highlighted by colored circles in (a). d) Evolution of the gaps as a function of the stretching parameter 
γ, showing the band gaps closing and re-opening following a band inversion caused by geometrical inversion of the unit cell.
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studies, is described in the Supporting Information. Herein, 
we treat bands of different polarizations independently, and 
we compute associated topological gap labels by considering 
only the bands of equal polarization. For example, the gap label 
for the longitudinal gap (red gap in Figure  3b) is obtained by 
summing the Zak phase of only the longitudinal bands below 
it. It is noted that the Zak phase of each dimerized cell is a 
gauge-dependent value that depends on the choice of the origin 
of the unit cell, while the difference between the Zak phases 
for the two configurations are equal to π if they are topologi-
cally distinct.[30] The difference of the Zak phases between the  
γ  = 0.5 and the γ  = − 0.5 configurations are estimated as π for 
the degenerate flexural bands, longitudinal band, and torsional 
band below their corresponding bandgaps. Thus, the band gaps 
of the unit cells with γ  = ± 0.5 are associated with different top-
ological invariants, and their phases are topologically distinct 
in spite of their identical band structures. This topological dis-
tinction is exploited for the design of the waveguide with the 
non-trivial interface of Figure  1c, which separates 6 cells with  
γ  = − 0.5 from 6 cells with γ  = + 0.5.

The eigenfrequencies of this finite system are computed and 
displayed in Figure 4a, where they are organized according to 
the polarization of the corresponding eigenstates, adopting 
the same color code used in Figure 3. The gaps are also high-
lighted as shaded areas of corresponding colors. Notably, local-
ized states highlighted by cyan circles appear inside each of the 

band gaps due to the non-trivial interface. The associated mode 
shapes are displayed in Figure 4b, which confirm their localized 
nature at the interface and their polarization at 6.34, 11.41, and 
16.67 kHz, respectively (see Supporting Information for anima-
tions of the interface modes).

Experiments on the additively manufactured sample of 
Figure  1c,d confirm the existence of the flexural interface 
mode. In the tests, the waveguide is mounted to an electro-
dynamic shaker which excites its transverse motion (perpen-
dicular to the x1 axis). The velocities of the points belonging to 
a grid aligned along the axis of the specimen are recorded by 
a Scanning Laser Doppler Vibrometer (SLDV). The shaker is 
mounted slightly to the left of the interface in order to induce 
the anti-symmetric flexural mode denoted as (i) in Figure  4b. 
The structure is excited by a broadband chirp signal excitation 
in the range of 3–10  kHz, within which a response transmis-
sion coefficient T(x1,ω) is computed as the ratio of the response 
at location x1 to the response at the excitation point ( x1  = 0). 
The excitation of the asymmetric mode of interest is enhanced 
through linear superposition by averaging the transmission 
response at mirror-symmetric points, that is, Tav(x1) = (T(x1,ω) −  
T( − x1,ω))/2. This process reproduces the case where the 1D 
dimerized surface is simultaneously excited by two out-of-phase 
sources placed at mirror-symmetric locations across the inter-
face, thus mimicking a dipolar excitation. The resulting trans-
mission results are displayed in Figure  4c, where the red line 

Figure 4. a) Eigenfrequencies of the 1D dimerized waveguide of Figure 1d: the three gaps are highlighted by the color code used in Figure 3; interface 
modes for flexural (i), longitudinal (ii), and torsional (iii) polarizations populate the 3 gaps and are highlighted by the cyan circles. b) Flexural (i), 
longitudinal (ii), and torsional (iii) interface modes at 6.34, 11.41, and 16.67 kHz, respectively. The color corresponds to the normalized displacement 
magnitude, varying from blue (minimum) to red (maximum). c) Experimentally measured transmission averaged across the interface (red) over the 
remaining length of the waveguide (black). The experimental flexural band gap is highlighted by the shaded blue region. The interface transmission 
(red) features a peak inside the gap that corresponds to the interface mode shown in (d). d) Experimental set-up and measured interface mode at  
6.57 kHz: the transverse motion is excited by an electrodynamic shaker and it is recorded by a SLDV.
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corresponds to the transmission averaged within the region of 
the interface (highlighted in the upper panel of Figure 4d), while 
the black line corresponds to the transmission averaged over 
the remaining length. The red curve evidences the presence of a 
transmission peak at 6.57 kHz, which occurs inside the flexural 
bandgap (shaded blue region in Figure  4c). Figure  4d shows 
the experimental set-up and the measured interface mode at 
6.57 kHz, confirms the localized and asymmetric nature of the 
mode, and shows a general agreement with the numerical pre-
dictions for the interface mode of Figure 4b. The flexural mode 
can also be excited when the shaker is mounted at the end of 
the surface. Corresponding experimental results are provided 
in the Supporting Information, and show a similar localization 
pattern for this mode. The measurements are conducted using 
a single beam laser vibrometer, which primarily detects the 
displacement component perpendicular to the structure, and 
does not detect longitudinal and torsional motion in a straight-
forward way. These mode polarizations might be measured by 
exploiting more complex measurement set-ups, which leverage 
lateral contractions or differential displacements at given axial 
locations. The additional complexity in measurement may not 
add significantly in terms of illustrating the onset of localized 
modes, which is confirmed for the transverse mode. Numerical 
evidence of the existence of these modes is included in the Sup-
porting Information.

3.2. 2D Hexagonal Minimal Surface-Based Material

The 2D hexagonal surface described by Equations  (3) and (4) 
is investigated next. The lattice constant a is 17.4 mm and the 
wall thickness of the shell is 0.8  mm. The elastic properties 
of the base material (E = 1.5 GPa, ν = 0.40) are measured by 
dynamic mechanical analysis (DMA) and through quasi-static 
mechanical testing, while the material density, ρ = 1028 kg m−3, 
was measured through an Archimedes setup (see Supporting 
Information for details of the employed material characteriza-
tion procedures).

The band structure for the unit cell of the 2D hexagonal sur-
face in Figure 2 is presented in Figure 5a, which only shows the 
dispersion branches corresponding to the out-of-plane polariza-
tion, extracted on the basis of the corresponding polarization 
coefficient. This polarization is chosen due to its relevance to 
the experimental measurements. A notable feature of the band 
structure of Figure 5a is the symmetry of the branches, which 
reflects the C6 symmetry of the 2D periodic surface, and the 
presence of Dirac cones at the high symmetry valley points K 
and K' of the Brillouin zone. The C6 symmetry is broken to pro-
duce a surface characterized by C3v symmetry for γ  ≠ 0. The 
band diagram for γ  =  0.5 shown in Figure  5b features band 
gaps that are opened by breaking symmetries, which lifts the 
Dirac cone degeneracy. While the branches still appear sym-
metric about the Γ point, they are characterized by distinct 
topological phases at the valleys (K and K'), which is also the 
result of the broken spatial inversion symmetry. The distinct 
topology at the valley points is evidenced by the nonzero valley 
Chern numbers of opposite signs at K1 and K ′

1  (details on the 
computation of valley Chern numbers as topological invari-
ants are provided in the Supporting Information).[17,21] The 

chirality of the valley modes associated with their pseudospin 
is illustrated by the animations provided in the Supporting 
Information, which further confirms their opposite topological 
character. This identified distinction is leveraged to introduce 
a topological interface by combining surfaces characterized by 
two topologically distinct phases which are induced by opposite 
values of γ. For instance, the valley at K exhibits a clockwise 
pseudospin for the γ  =  0.5 case, and a counterclockwise pseu-
dospin for the γ  = − 0.5 case.

A 2D hexagonal surface material with an interface is con-
structed by joining 2D dimerized surfaces with opposite γ 
values (± 0.5). An eigenvalue computation is performed for a 
finite strip that includes 18 cells aligned along the x1 direction, 
9 of which are characterized by γ  = − 0.5, while the remaining 
9 cells by γ  = + 0.5. Imposing free boundary conditions at the 
edges along the x1 direction, and periodic Bloch boundary con-
ditions along the boundaries aligned with the x2 direction pro-
duces the finite strip dispersion diagram in Figure  5c, which 
reveals the presence of an interface mode inside the gap.

Finally, a zigzag domain wall aligned with the lattice vectors 
is introduced to separate the two distinct phases defined by 
opposite γ values (Figure 2c), and to evaluate the ability to con-
fine wave motion along this non-trivial interface. To this end, 
the harmonic response of the 2D surface with the interface is 
computed for excitation at the frequency corresponding to the 
interface mode of Figure 5c (6.89 kHz). Excitation at the mid-
point of the surface produces the harmonic response shown in 
Figure  5d, which confirms the confinement of motion along 
the predefined zig-zag interface. We note that the observed 
motion is the result of the propagation of an elastic wave that is 
capable of managing a 120° sharp turn, without being reflected, 
which is one of the hallmarks of topologically protected wave 
motion.[23]

Vibration experiments are conducted on the additively manu-
factured surfaces shown in Figure 2c. As in the 1D experiments, 
an electrodynamic shaker is attached at the center of the sample 
to induce transverse vibrations (along x3). First, transient tests 
are conducted to experimentally evaluate dispersion properties 
by applying broadband excitation within the frequency range of 
interest. The wavefields w(x1,x2,t) recorded by the SLDV over a 
2D grid are processed via 3D Fourier transformation (3D FT), 
resulting in their reciprocal space representation w k k ωˆ ( , , )1 2 , 
which maps the amplitude content of the wavefield in the fre-
quency/wavenumber domain.[26,35] Here, a broad-band 2-cycle 
sinusoidal burst of center frequency of 8 kHz is applied to sur-
faces characterized by γ  =  0 and γ  =  0.5 (without an interface). 
The magnitude of the resulting spectral contents w k k ω| ˆ ( , , ) |1 2

is plotted in the form of colormaps that are superimposed to 
the numerical dispersion curves (dotted lines) in Figure 6a,b. 
An overall agreement with the out-of-plane modes is observed, 
along with the confirmation of the presence of the Dirac points  
for γ  =  0, and the opening of the gap for γ  =  0.5. A small por-
tion of the energy is observed to leak into additional modes in 
the figure (red dots), which are predominantly in-plane modes 
that were excluded from the plots of Figure 5 which showed only 
out-of-plane modes. Next, we employed narrow-band 36-cycle 
harmonic signals to illustrate the wavefields behavior at selected 
frequencies. Figure 6c shows a snapshot of the transient wave-
field at 3.09  ms for the γ  =  0 case for a center frequency  
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of 8 kHz, which is chosen to be close to the Dirac point. The 
wavefield shows evidence of the 6-fold symmetric nature of the 
wavefront corresponding to the C6 symmetry of the 2D hex-
agonal surface. In contrast, the wavefield of the surface com-
prising of γ  = ± 0.5 with an interface is recorded at a center fre-
quency of 6.75 kHz, which is a frequency inside the band gap. 
The snapshot at 4.30 ms in Figure 6d demonstrates the confine-
ment of the wave motion along the zigzag interface and high-
lights how the wave can perform a sharp turn with minimal 
backward reflection (See Supporting Videos for animations that 
clearly show waveguiding over time).

4. Conclusions

In conclusion, we have reported the geometrical parameteri-
zation of minimal surfaces and demonstrated their function-
ality as topological mechanical metamaterials. The considered 
1D and 2D dimerized surfaces modify the primitive structure 
of the Schwarz P surface to introduce topologically non-trivial 
interfaces. The geometric parametrizations employed produce 
distinct topological phases that are created through selective 
breaking of spatial inversion symmetries to form topological 
interfaces within the continuous material framework of min-
imal surfaces. The considered interfaces show the ability to 
support localized modes in the 1D case, and wave confinement 

along a zig-zag interface that separates two distinct phases in 
the 2D case. The results presented suggest that the geometric 
modifications considered can naturally be employed at different 
length scales and operate at different ranges of frequencies 
upon proper scaling of the considered geometries.

These investigations contribute to the advancement of fun-
damental knowledge and new concepts for topological metama-
terials. The results suggest a suitable material platform within 
which topological concepts can be introduced to complement 
other advantageous mechanical properties as in the case of 
minimal surface-based structures. The proposed configura-
tions also suggest other avenues whereby configurations could 
be engineered to induce a variety of complex wave phenomena, 
and to extend them to 3D assemblies. These include for 
example topological channels or quasiperiodic modulations pro-
viding rich wave localization capabilities. In addition, the geom-
etry of the considered class of minimal surface-based materials 
could be adapted to target properties, structural configurations, 
choice of constituent materials, length scales, and manufac-
turing processes to pursue a wide range of engineering applica-
tions at different spatial scales, from structural components, to 
nano or micro-electromechanical devices. Other potential areas 
of future studies include active configurations,[36] which in the 
context of shell-based materials may enable the time reconfigu-
ration and activation of topological interfaces by inducing geo-
metrical changes, primarily in the form of curvature. Moreover, 

Figure 5. a) The band structure of the 2D hexagonal surface with γ  = 0 features Dirac points at the high-symmetry valley points K and K′. The inset 
illustrates the reduced Brillouin zone. b) Band structure of the 2D hexagonal surface with γ  = 0.5 showing opened band gaps resulting from broken 
symmetries. c) Band structure of the finite strip including the non-trivial interface obtained by joining two semi-finite hexagonal surfaces with opposite 
γ values (γ  = ± 0.5). d) Harmonic response of the plate at 6.89 kHz, which corresponds to one edge state marked in (c), illustrating wave motion 
confinement along the zigzag non-trivial interface.
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multifunctional performance[37] might be pursued by com-
bining mechanical strength, with dynamic wave control and 
possibly acoustic functionalities.

5. Experimental Section
Sample Preparation: Geometries were generated in the MeshMixer 

software to construct 1D and 2D dimerized surfaces of assigned wall 
thickness. Fabrication of the 1D dimerized assembly was conducted by 
Formlabs Form 3 by Stereolithography. The lattice spacing was 2a = 
15 mm and the printing material employed was durable resin of elastic 
modulus 1.0–1.5 GPa and density of 1130 kg m−3. The overall dimension 
of the 1D specimen was 180.00 mm × 7.50 mm × 7.50 mm.

The 2D hexagonal surface materials were produced by Multi 
Jet Fusion, using HP Jet Fusion 4200 3D printer. All samples were 
built in Nylon 12 (HP 3D High Reusability PA 12), using a mixture 
of approximately 25% virgin powder and 75% recycled powder, as 
recommended by the manufacturer. As the material properties provided 
by the manufacturer refer to virgin powder,[38] the elastic properties of the 
printed material were measured by DMA and quasi-static tensile testing. 
The testing results, which are detailed in the Supporting Information, 
produce estimates for a Young’s modulus of 1.5 GPa and for a Poisson’s 
ratio of 0.4. A density of 1028 kg m−3 was measured with an Archimedes 
setup. These values were employed in the numerical simulations. The 
lattice spacing in the 2D hexagonal cell was 17.4 mm, and their overall 
finite size was 200.00 mm × 180.78 mm × 7.44 mm.

Numerical Simulations: The geometries employed for numerical 
simulations were first generated in Matlab and then processed in 
Meshmixer to produce the mesh file used for numerical discretization 
and 3D printing. All finite element simulations were performed using 
the “Shell module” of COMSOL Multiphysics. The polymer-based 
material (Young’s modulus E  =  1.77 GPa, Poisson’s ratio ν  =  0.35, 
density ρ  =  1130 kg m−3) was chosen as the elastic medium for the 1D 
dimerized waveguide, while Nylon-based material (Young’s modulus 
E  =  1.5 GPa, Poisson’s ratio ν  =  0.4, density ρ  =  1028 kg m−3) was 
the choice material for the 2D hexagonal surface materials. Based on 
eigenfrequency calculations, dispersion computations were performed 
by imposing Bloch periodic boundary conditions across the unit cells. 
The forced response computation was performed by considering a 
point load applying a force along the x3 direction on the 2D hexagonal 
surface. The excitation point was located at the center of the 
upper surface. The average mesh sizes of the 1D dimerized and 2D 
hexagonal minimal surface-based materials were 0.338 and 0.578 mm, 
respectively.

Experimental Measurements: The vibration of the samples was 
generated by an electrodynamic shaker (Bruel & Kjaer V203) powered 
by a linear power amplifier (Bruel & Kjaer LDS LPA 100), and the out-of-
plane velocities were detected optically by an SLDV (Polytec PSV-I-550) 
over a predefined grid of points. The 1D dimerized surface was mounted 
to the shaker at an off-center position relative to the interface in order 
to excite the flexural mode of interest efficiently, upon consideration 
that the mode of interest has a node right at the interface. Similarly, the 
shaker was attached to the center of the 2D hexagonal surface materials, 
and it was aligned with the transverse x3 direction.

Figure 6. Experimental frequency/wavenumber representation along the reduced Brillouin zone (colormap) and comparison with numerical band 
structure predictions (dotted lines) for 2D hexagonal surfaces a) with γ  = 0 and b) with γ  = 0.5. The colormap corresponds to the magnitude of 
wavefields in reciprocal space obtained through 3D FT of experimental data (amplitude varies from white to red), while the blue and red dots respec-
tively correspond to the numerical branches for out-of-plane and in-plane modes. c) Time snapshot of the experimental wavefield at 3.09  ms for 
the γ  = 0 surface which shows evidence of the 6-fold symmetry. d) Time snapshot of the experimental wavefield in the presence of the zigzag interface 
for γ values (±0.5) at 4.30 ms.
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