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            Introduction 
 At the beginnings of metamaterials stood a theoretical pre-
diction  1   regarding negative-refractive-index photonic materi-
als whose experimental realization was to follow only decades 
later.  2   When it comes to mechanical metamaterials, theoretical-
computational predictions also play a signifi cant role in guid-
ing the metamaterial design and optimization process. 

 Yet, recent accelerated advances in small-scale fabrica-
tion  3   have made it challenging for theory and simulations 
to keep up with the pace of new experimental opportunities. 
Considerable challenges stem from, among others, (1) the var-
ious scales involved  4   (from nanometer-scale features to mac-
roscale samples), (2) the failure of separating material-level 
from structural-level behavior in small-scale structures,  4   –   6 

(3) the multiphysics nature of the phenomena at play, (4) the 
tremendous multiscale design space, and (5) the growing 
importance of imperfections with decreasing length scale.  7 

The goal of any modeling approach is the accurate prediction 
of the effective (meta)materials properties in order to replace 
expensive trial-and-error experimentation by a simulation-
guided exploration and optimization of the design space, as 

well as to assist in shedding light on the observed physical 
principles at play. This article focuses on modeling cellular 
metamaterials (including the broad and popular classes of 
truss-, plate-, and shell-based architectures), while many of 
the techniques are widely applicable beyond the scope of this 
contribution. Further, we treat perfect systems, while imper-
fections are discussed elsewhere.  7 

 Cellular metamaterials are intriguing for a number of 
reasons. Their low relative density offers lightweight solu-
tions for applications ranging from aerospace and transpor-
tation to clothing, medical devices, and personal protection. 
Large surface-to-volume ratios make them ideal for mul-
tiphysics applications such as catalysis, heat exchange, and 
fl uid mixing. Additionally (and essential here), the underly-
ing structural architecture allows simulation approaches pio-
neered at classical engineering scales without the statistical 
complications of atomic-scale simulations, which makes for 
intuitive design guidelines. One may further differentiate 
between periodic architectures (based on the tessellation of 
a unit cell, so that modeling techniques may exploit the 
periodicity and symmetries of the system), aperiodic, random 
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designs8,9 (whose effective properties are more challenging to 
extract), as well as quasi-periodic metamaterials (which dis-
play periodicity on some scale while featuring randomness 
on others). Finally, experimental techniques have facilitated 
multiscale cellular architectures with features spanning from a 
few nanometers to microns to many centimeters,4 allowing for 
design optimization across many levels. This calls for multi-
scale modeling and optimization strategies that bridge scales, 
many of which are reviewed in the following.

Effective properties prediction
Analytical approaches
A number of important mechanical properties of architected 
materials with relatively simple topologies can be treated by 
analytical approaches. If a periodic truss-based lattice mate-
rial (e.g., the octet lattice10) can be approximated as a net-
work of structural elements (trusses or beams) connected by 
ideal nodes, then its effective elastic stiffness along different 
loading directions can be calculated by solving mechanical  
equilibrium and compatibility equations; similarly, its effective 
strength can be estimated by relating the macroscale external 
stress applied to the lattice to the loads carried by each strut, and 
adopting a yield, fracture, or elastic buckling failure condition 
at the strut level. This technique has been successfully applied 
to a number of periodic lattice topologies10–14 as well as to sto-
chastic foams;11 in the latter case, analytical solutions provide 
the scaling of stiffness and strength with relative density, but  
absolute values require the fitting of nondimensional constants 
of order one to experiments or numerical simulations.

More recently, analytical techniques have been extended 
to plate-based closed-cell periodic architected materials to 
derive necessary conditions that guarantee elastic isotropy.15 
Furthermore, analytical techniques have been used to extract 
the effective initial fracture toughness of truss-based cellu-
lar materials and foams, and to elucidate the dependence of 
toughness on relative density, fracture strength of individual 
struts, and unit-cell size. Also in this case, nondimensional 
constants of order one are fitted to experiments or simula-
tions.16 More complex material behavior can be described by 
methods of homogenization to extract the linear, nonlinear, or 
dynamic metamaterial response from averaging over a rep-
resentative unit cell—this includes both the determination 
of effective material behavior10,17–20 (such as the stress–strain 
response) as well as multiscale simulations in which the con-
stitutive behavior on the macroscale is computed on the fly 
by solving a nested lower-scale problem at the unit cell level. 
The latter approach can also describe localization and size-
dependent phenomena,21 but may require semi-analytical or 
numerical solution schemes.

Multiple studies using the previously mentioned techniques 
have unveiled key features of lattice materials:16 (1) a suffi-
cient coordination number (number of bars meeting at a node) 
must exist for the lattice to carry loads primarily by tension 
or compression of its members (stretching-dominated lattice). 
When this condition is satisfied, the lattice is mechanically 

efficient, with stiffness and strength scaling linearly with the 
relative density; a key example is the octet lattice. Conversely, 
when this condition is not satisfied, the lattice carries load 
by bending of its members (bending-dominated lattice), and 
its stiffness and strength scale with higher powers of relative 
density (2 and 3/2, respectively). (2) Most stochastic foams 
are bending-dominated, and hence mechanically inefficient 
compared to stretching-dominated periodic lattices. (3) The 
fracture toughness of truss-based lattice materials and foams 
scales with the square root of the unit-cell size and a topology-
dependent power of the relative density, ranging between 1/2 
and 2 (the scaling power is 1 for the octet lattice).

Analytical predictions for stiffness, strength, and fracture 
toughness have been verified against experiments and numeri-
cal simulations and have proven to be remarkably accurate 
for lattices with solid cross sections at relatively low rela-
tive densities.10,11,13,14,22–24 As the relative density is increased 
and the thickness-to-diameter ratio of hollow truss lattices 
is decreased, the aspect ratio of the members (length-to-
diameter ratio) is reduced, ultimately violating the slender-
strut assumptions underlying such calculations.25,26 To address 
these challenges, numerical techniques are required. The 
same applies to plate- and shell-based architectures, which, 
in principle, follow similar scaling laws; yet, their structural  
response cannot easily be described by analytical approaches, 
so that numerical techniques have become the primary method 
of choice.

Numerical approaches
Finite element analysis of the unit-cell response
Numerical techniques such as the finite element (FE) method 
are popular approaches in situations where the effective 
properties can be extracted from a periodic unit cell, but are 
not within analytical reach. The first step in FE analysis is 
mesh generation. Unit cells of architected materials have been 
meshed with truss, beam, shell, and solid elements, depend-
ing on the topology and geometry of the unit cell and the 
desired compromise between computational speed and accu-
racy. Except for trivial topologies, the unit cell is generated by 
computer-aided design (CAD) and subsequently meshed in an 
FE package or via a dedicated mesh generator.13 For situations 
in which commercial CAD packages are unable to accurately 
resolve important geometrical features (e.g., the shape of a 
filleted node in a hollow lattice with stout members), custom-
built parametric geometry generators have been developed, 
which offer the additional benefit of seamless integration with 
geometry optimizers (albeit at the expense of generality).25

Recently, stochastic shell-based architected materials 
with spinodal topologies were shown to possess excellent 
mechanical properties while being, in principle, amenable 
to self-assembly by a variety of processing routes. For such 
topologies, periodic unit cells were generated by solving the 
Cahn–Hilliard equation for spinodal phase separation for 
given average phase volume fractions. Interfaces between 
the resulting spinodal phases were extracted by level-set 
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or image-processing techniques. This approach has gener-
ated both isotropic27 and anisotropic28 topologies, by suitable 
choice of a potential energy landscape. Spinodal topologies 
are characterized by a uniform negative Gaussian curva-
ture, which enables a more efficient distribution of local 
stresses upon external loading than for lattice-based mate-
rials (Figure 1a).

When long-range effects such as buckling and bifurcation 
are of no concern, properties of periodic architected materials 
can be extracted from a single unit cell subject to, for example, 
periodic boundary conditions. These conditions probe the 
effective response when all unit cells deform in the same 
manner, hence approximating the response of a periodic infi-
nite architected material undergoing homogeneous deforma-
tion. For example, the stiffness tensor can be extracted via 
numerical homogenization, a procedure relying on an asymp-
totic expansion of the governing equations, by computing the 
linearized incremental stress–strain response.29,30 Application 
of this approach to truss lattices has demonstrated how clas-
sical beam theory indeed applies only in the limit of slender 
structures, whereas stubby beams and, in particular, hollow-
strut architectures require the described numerical treatment 
to extract the effective mechanics as a function of topology 
and relative density.26,31 Recently, similar techniques have 
been applied to the stiffness tensor of closed-cell plate-based 
architected materials, which demonstrated that plate-based 
materials with cubic symmetry exist that are both elastically 
isotropic and optimally stiff (i.e., they approach the well-
known theoretical Hashin–Shtrikman upper bound32).

Numerical homogenization has been applied to other lin-
ear functional properties (including thermal and electrical 
conductivity,29 thermal expansion,33 and fluid permeability34) 
and also to nonlinear behavior (e.g., the large-deformation 

response of auxetic architectures [i.e., architectures with a 
negative Poisson effect]35).

Unit-cell strength calculations are more challenging, and 
their accuracy and reliability depend on the chosen definition 
of strength (e.g., as the onset of yielding, plastic collapse, 
fracture, or elastic buckling). Moreover, unit-cell results only 
apply here if the periodicity assumption is adequate (i.e., if 
localized, aperiodic behavior can be excluded). The onset of 
yielding is estimated by applying a macroscopic strain to the 
unit cell along the desired loading direction and extracting the 
macroscopic stress at which the maximum local stress within 
the unit cell exceeds the yield strength of the base material 
(modeled as linear elastic).25 The onset of elastic buckling is 
generally obtained by a Bloch-type eigenvalue analysis of a 
single cell,25,36 with the constituent material again modeled as 
linear elastic.

When significant geometric nonlinearities are expected, 
bifurcation can be triggered by precomputing the effective 
elastic buckling strength and the associated lowest buckling 
modes (e.g., from preloading the unit cell up to buckling, 
followed by an eigenvalue analysis). Once extracted, a lin-
ear combination of the first modes can be used to introduce a 
small geometric imperfection, so that a subsequent simulation 
of the unit cell until collapse via a nonlinear quasistatic or 
Riks analysis provides a measure of the elastic/plastic buck-
ling strength of the architected material.37 Post-buckling simu-
lations are generally able to capture the entire stress–strain 
response of the material quite reliably, even for complex 
topologies (Figure 1b). Eigenvalue extractions on unit cells 
will only capture buckling modes with wavelengths smaller 
than the unit-cell size. While often these modes dominate the 
strength, this is not universally true, and larger numbers of 
unit cells may be required for accurate extraction of the effec-

tive buckling strength.38,39 An alternative tech-
nique for elastic buckling strength calculations 
is based on the Bloch–Floquet theory, which 
searches for unstable modes of, in principle, 
arbitrary wavelength.40–42 This powerful tech-
nique allows for an accurate estimation of the 
lowest buckling modes (and associated strength) 
for wavelengths longer than the unit-cell size.

The same Bloch wave ansatz is also 
widely used to predict the response of archi-
tected materials to mechanical and acoustic 
waves,43–45 enabling the modeling and design 
of metamaterials with tailored bandgaps for 
controlled wave attenuation, wave guiding and 
redirection, or signal processing. Applicable to, 
in principle, any periodic architecture, the entire 
space of wave vectors is sampled to extract 
the wave dispersion relations of the metama-
terial, uniquely linking excitation frequencies 
to wavelengths and directions, and revealing 
frequencies that do not propagate waves in 
specific directions (partial bandgaps) or in all 

Figure 1.  The mechanical performance of spinodal shell-based architected materials. 
(a) Comparison of the distribution of the local von Mises stress ( VMσ ) normalized by  
the limit stress for the materials ( limitσ ), in a hollow microlattice unit cell and a spinodal 
shell topology of the same relative density, both loaded under the same macroscopic 
uniaxial compressive strain. Notice that the uniform negative Gaussian curvature of 
the spinodal shell results in a more uniform stress distribution and superior mechanical 
efficiency. (b) Comparison of elastoplastic stress–strain response obtained by uniaxial 
compression experiments and finite element (FE) modeling. The samples of spinodal 
shell architectures at three relative densities, displayed in the insets, are produced by 
two-photon polymerization direct laser writing at the microscale in an acrylate resin 
and tested with an Alemnis nanoindenter inside a scanning electron microscope.27
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directions (full bandgaps). Further computing the group velocity 
from the dispersion surfaces reveals the directions of energy 
flow in the medium,46 thus effectively predicting the directions 
in which vibrational energy will flow—making the approach 
enabling tailored wave guiding (or wave beaming).

Over the last decade, instabilities have been exploited to 
create beneficial effective properties.47 For example, elas-
tic snap-through (i.e., the sudden change of configuration of 
structural elements as a result of an elastic instability) within 
carefully designed unit cells upon macroscopic loading has 
been used as a mechanism to dissipate kinetic energy via the 
damping of high-frequency vibrations of unit-cell features 
based on the constituent material’s intrinsic damping. When 
appropriately designed, this mechanism enormously ampli-
fies the intrinsic damping of the base material and can be 
used to generate single- or multi-stable periodic architected 
materials with nearly linear elastic constituents, which exhibit 
exceptional combinations of strength, stiffness and energy dis-
sipation, energy trapping or force isolation.48–57 
Figure 2 provides an example of this mechanism. 
Figure 2a shows a laser-cut two-dimensional 
(2D) periodic architected material, where each 
unit cell contains rigid elements connected 
by thin flexible hinges. The analytical predic-
tion of the mechanical response of a single hinge  
under compression is shown in Figure 2b, 
which shows the snap-through behavior. The 
behavior of the architected material consist-
ing of multiple cells is analytically predicted 
in Figure 2c, as a function of the number of 
cells. Finally, the experimental response of a 
sample with seven unit cells is compared to 
the analytical prediction in Figure 2d. The 
ability to predict the stress–strain curve of 
the unit cell during the snap-through (and 
hence through a regime of negative stiffness) 
is essential for modeling and designing such 
architected materials and can be obtained by 
post-buckling FE analysis at the unit-cell level 
or by beam theory (Figure 2b–d).52,53,56

FE analysis of multicell architected 
materials
The limits of unit-cell analysis become evident in 
fracture toughness calculations; the localized 
presence of a discrete crack in the material vio-
lates the assumption of a separation of scales 
(and hence of the assumed periodic deforma-
tion). For the definition of fracture toughness to 
hold, the sample must be much larger than the 
crack, which in turn, needs to be much larger 
than the unit-cell size, making fracture toughness 
computations for lattices remarkably expensive.

Two key approaches have been success-
fully used: (1) For 2D brittle lattice materials, 

a relatively small number of unit cells around the crack tip is 
meshed with beam elements. The sample is subjected to displace-
ment boundary conditions consistent with the K-field solution for 
a continuum material with the same effective elastic proper-
ties as the lattice material, and the largest stress in a strut in 
the lattice is extracted. The fracture toughness is calculated 
as the ratio of the constituent material’s tensile strength to the 
largest stress in the lattice, multiplied by the applied value of 
the stress intensity factor.16,58–60 (2) A single edge notch bend 
(SENB) specimen with dimensions consistent with ASTM 
standards is meshed with a lattice material, generally using 
beam elements. The sample is loaded in three-point bending, 
and the load-crack extension curve is extracted. Standard for-
mulas are employed to compute the initial fracture tough-
ness and the resistance (R) curve of the lattice material. This 
approach has been used for 2D and three-dimensional (3D) 
lattices, including the octet lattice.24 Both techniques have 
been used to validate analytical estimates and calculate the 

Figure 2.  Multistable architected material exploiting negative-stiffness elements.  
(a) Implementation of the topology. (b) Calculated load-displacement response of a single 
hinge under displacement control as a function of the geometric parameters of the hinge, 
showing the region of negative stiffness. The directions of load, F, and displacement, 
Δ, and the boundary conditions are shown in the inset. Notice that analytical and numerical 
models agree nearly perfectly. (c) Calculated stress–strain response of the material shown in 
(a), for a single unit cell and for 200 unit cells in series (approaching the continuum response). 
Loading direction and geometrical parameters are defined in the inset. (d) Experimental 
stress–strain response of the material shown in (a), with seven unit cells in series. Notice 
the significant amount of energy dissipation and hysteresis enabled by negative-stiffness 
mechanisms.56 Note: EI, flexural stiffness of the hinge; E, elastic modulus; w, width; b, out-
of-plane thickness.
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values of topology-specific nondimensional constants that are 
included in, but not defined by, the analytical models.

Multiscale techniques
Where the effective behavior cannot be extracted from a unit 
cell, multiscale techniques become the method of choice, 
which aim toward the accuracy of unit-cell resolution 
while providing the efficiency of macroscale calculations. 
One such approach is the quasicontinuum (QC) method, 
originally introduced for coarse-graining atomistic lattice 
calculations61 and later extended to truss lattices.62–65 Truss-
based QC models the full discrete lattice, but introduces 
kinematic constraints in regions requiring lower resolution 
(thus retaining the accuracy of individual structural mem-
bers where needed, while coarsening the description away 
from those regions into an efficient continuum manner—
with both regions being adaptively updated as needed).  
A prime application is the aforementioned fracture tough-
ness predictions of truss lattices, for which discrete truss-
level resolution is required near the crack tip, while large 
samples are required to apply loading conditions remotely. 
Here, full resolution is retained at the crack tip (and evolved 
adaptively based on regions of highest stresses), while an 
efficient coarsened description is used in the far field, thus 
enabling simulations of several orders-of-magnitude larger 
samples than achievable by discrete structural FE calcula-
tions. Figure 3c–e shows illustrative examples65 of coarse-
grained fracture specimens using the truss QC method with 
and without adaptive mesh refinement to produce full reso-
lution in regions of interest.

An alternative is to compute the effective local material 
behavior from a unit cell on the fly and to feed such informa-
tion into a macroscale FE simulation.38,66 Owing to the compu-
tational expenses of such homogenization-based approaches 

(incurred by the nested large- and small-scale simulations), 
their use has been restricted to relatively simple geometries 
and problems (see Figure 3a–b for an example of a 3D truss 
replaced by an efficient FE model).

Emergence of size effects
Recent progress in advanced manufacturing has enabled fab-
rication of architected materials with unit cells at the micron 
scale and sub-cell geometric features (e.g., truss diameters) at  
the nanoscale.67 When made out of metallic and ceramic  
materials at this scale, interesting metamaterial size effects may 
emerge. For example, polycrystalline metals with nanoscale 
grain size can be readily processed, resulting in increased yield 
strength (Hall–Petch Law) relative to the bulk.68–70 Similarly, 
virtually flaw-free ceramic materials approaching the theo-
retical strength can be produced at those small scales.4,71–74 
Architecting cellular metamaterials with such exceptionally 
strong nanoscale constituents allows designers to capitalize on 
these size effects at a large scale (the scale of the architected 
material). Moreover, interesting new effects may emerge from 
architectures in which the feature sizes (e.g., strut diameter or 
length in trusses) are on the same order as the material features 
(e.g., grain size).

Our ability to predict the processing-specific microstruc-
tural evolution of the constituent material and model these size 
effects has remained highly limited. Likewise, predicting 
the effective response when material-level and structural-
level phenomena cannot be treated separately anymore is a 
key open challenge: FE analysis (popular for structure-level 
simulations) does not capture the small-scale material response 
and microstructure, while atomistic techniques (capable of 
accurately describing material microstructure and nanoscale 
mechanisms) cannot be applied to micron-sized unit cells due 
to computational costs. The integration of modeling tech-

niques that enable the co-design of material and 
architecture, by combining tools of Integrated 
Computational Materials Engineering (ICME) 
with continuum-level modeling and topology 
optimization, remains a promising, but widely 
untapped opportunity.

Effective property optimization
Searching the design space of metamaterials to 
identify optimal concepts that achieve desired 
effective properties is difficult, given the stag-
gering complexity of microarchitectures and the 
infinite design space (including the truss-, plate-, 
and cell-based cellular networks previously 
discussed). Most computational attempts to 
systematically design and optimize metamate-
rials utilize variations of topology or shape 
optimization,34,75,76 a detailed review of which 
is presented in Reference 7. Such approach-
es typically begin with a random mixture of 
materials or interconnected beams that are 

Figure 3.  Examples of multiscale modeling approaches for truss metamaterials. Replacing 
a discrete truss network (a) by a continuum modeled efficiently by finite elements21  
(b) considerably reduces computational costs. The quasicontinuum (QC) method65 (c) retains  
full discrete resolution near a crack tip while coarsening away from the notch; mesh 
adaptivity within the QC method refines locally where stress concentrations are expected 
in 2D truss lattices made of kagome (d) and triangular (e) unit cells (two sets of graphics 
visualize the progression of refinement under static loading).
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iteratively removed or altered using genetic algorithms until 
a metamaterial architecture is identified that more closely 
achieves the desired properties. Although such approaches 
often generate impressive nonintuitive designs, they are also 
computationally expensive and tend to converge to local min-
ima within the design space. Thus, designers have little confi-
dence that a global minimum (i.e., a truly optimal design) has 
been identified.

Recently, a fundamentally different approach77 was unveiled 
to more efficiently search the design space of metamaterials 
and to increase the chance that a global optimizer is identified. 
This approach decouples topology synthesis from geometry 
optimization. Topology synthesis is the process of determin-
ing the optimal number, kind, location, and orientation of 
elements (e.g., beams, notches, or hinges) that constitute the 
metamaterial’s topology. Geometry optimization is the pro-
cess of determining the optimal geometric parameters (e.g., 
the optimal lengths, widths, and thicknesses of the constitu-
ent beams) that those elements should possess to achieve the 
desired properties.

To independently perform topology synthe-
sis, the new approach utilizes the mathematics 
underlying the freedom and constraint topolo-
gies (FACT) methodology.78–80 Using this 
approach, the topologies of 3D periodic or ape-
riodic metamaterials can be synthesized with 
six orders-of-magnitude higher computational 
efficiency77 than standard topology optimiza-
tion approaches. The FACT methodology uti-
lizes a library of geometric spaces that represent 
every linear combination of independent twist 
and wrench vectors81 and embody the complete 
design space of metamaterial topologies. One 
set of spaces is called freedom spaces and rep-
resents the metamaterial’s desired degrees of 
freedom (DOF). Another set of complemen-
tary spaces is called constraint spaces and 
represents the regions where constraint ele-
ments (e.g., beams, notches, and hinges) should 
be placed within the topology to achieve the 
desired DOF of their corresponding freedom 
spaces. Principles have been determined for 
most efficiently searching the FACT-library’s 
spaces for considering the topology configura-
tions (i.e., parallel,79,80,82 serial,83,84 hybrid,85 and 
interconnected hybrid86 configurations) that are 
likely to yield an optimal topology, which is 
most promising for achieving the desired prop-
erties once its geometry has been optimized. 
This mathematical framework reduces the 
amount of information needed to synthesize 
the topology of metamaterials and affords the 
approach its synthesis speed.

Once synthesized, the geometric param-
eters of the elements that constitute the 

metamaterial’s topology are optimized (i.e., geometry  
optimization is performed independently). To this end, the 
boundary-learning optimization tool (BLOT)87 is used, which 
efficiently leverages machine learning to train a neural net-
work88 using FE data collected via an automated parameter 
sweep of the FACT-synthesized topology. Once trained, 
the neural network model is used within specialized multi- 
objective optimizers87 that rapidly identify the boundary of 
achievable properties. The approach is iterated by adding more 
FE data, collected along the previously identified boundary, to 
the neural-network training algorithm until the true boundary, 
including convex and concave portions, is identified within a 
specified error percentage.

As an example, we consider a metamaterial that should be 
stiff in all directions except along two orthogonal compliant 
directions (e.g., the two translational DOF shown as black 
arrows in Figure 4a)77 and about an orthogonal compliant 
rotational axis (e.g., the red rotational DOF line shown with a 
circular arrow about its axis in Figure 4a). If these three DOF 
are modeled as twist vectors and are linearly combined, they 

Figure 4.  (a) Three desired degrees of freedom (DOF);77 (b) freedom and constraint 
spaces;77 (c) constraint space is used to synthesize each cell’s topology;77 (d) periodic 
metamaterial example consisting of repeating cells;77 (e) geometric parameters defined;87  
and (f) plot showing the cell’s design space boundary for two properties.87 Note: T, thickness; 
L, length; W, width.
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generate a freedom space from the complete FACT library of 
spaces that consists of all translations (shown as the black disk 
of arrows in Figure 4b) that are perpendicular to the desired 
rotational axis and all rotational axes that are parallel to 
that axis (shown as the box of red rotation lines in the same 
figure). This freedom space uniquely links to the complemen-
tary constraint space, also shown in Figure 4b as a box of blue 
constraint lines parallel to the rotation lines in the freedom 
space. Each of these constraint lines represents the axis of 
a potential wire constraint element that would permit the  
motions within the complementary freedom space. Instructions 
are embedded in each constraint space within the FACT 
library to guide the selection of the optimal number and kind 
of elements from within its geometry. A cell with four parallel 
wire flexures was synthesized from the constraint space of our 
example, as shown in Figure 4c. By repeating this cell within 
a periodic lattice (Figure 4d), the topology of a metamaterial 
is synthesized that achieves the three desired compliant DOFs 
shown in Figure 4a.

After the topology is synthesized using the spaces of the 
FACT library, its geometry can be optimized using the BLOT 
for any combination of desired properties (e.g., range of trans-
lational deformation and natural frequency associated with  
that DOF). Once the topology’s three independent geomet-
ric parameters are defined (Figure 4e), the smallest achiev-
able feature sizes for each of these three parameters, as well 
as the largest geometrically compatible values for the same 
parameters, must be provided. Examples include the proper-
ties of the constituent material as well as the tolerances of the 
available fabrication process to identify the smallest resolu-
tion increment by which each geometric parameter can be 
changed to sweep between these smallest and largest val-
ues. Using this information, the BLOT plots the boundary  
(Figure 4f) that circumscribes the combination of desired capa-
bilities (e.g., the ranges of motion, d, per system character-
istic length, 2 2+L W , and the natural frequencies, ω, that can 
be achieved along the direction of the translational DOF by 
the topology’s geometric instantiations for the given range 
of parameters. Two extreme designs are shown as black dots that 
lie on either end of the optimal portion of the red boundary 
plotted in Figure 4f. Note that this approach can optimize for 
linear and nonlinear properties for any periodic or aperiodic 
metamaterial topology desired.

Conclusions
The modeling and optimization of metamaterial architectures 
for tailored mechanical and multifunctional performance can 
rely on various analytical and computational methods that 
extract the effective material response from, for instance, 
unit-cell FE calculations and homogenization approaches, or 
which involve multiple to many unit cells such as in QC and 
related multiscale techniques. At smaller scales, discrete and, 
in particular, atomistic methods gain importance (but require  
considerable computational resources). Despite many existing 
approaches, a long list of open challenges remain. These include 

(1) models for the complex nonlinear, inelastic, and rich 
nonlinear dynamic response of metamaterials; (2) models 
for the nano- and microscales where material and struc-
tural feature sizes are of the same order and neither classical 
micromechanical and atomistic techniques nor structural 
engineering tools are applicable; and (3) sophisticated 
multiscale techniques that bridge length and time scales. 
Further challenges arise from the lack of periodicity (such 
as in self-assembled architectures), where averaging tech-
niques require large representative unit cells and statistical 
methods gain importance.

When it comes to optimization, techniques are required 
for more rapidly and intelligently searching the extreme  
design space, especially for multiphysics properties. Special 
challenges arise from aperiodic designs, for which the stor-
age and manipulation of billions of nonrepeating constituent 
elements must be efficiently managed. Finally, accounting for 
fabrication-based tolerances and imperfections7 (and assess-
ing the quality of what was actually fabricated) is essential 
and often neglected when predicting the effective metamate-
rial performance.
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